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1 BACKGROUND

/ The present work on robot instructability is based on an ongoing effort to apply modern manipulation
technology to serve the needs of the handicapped BF The Stanford/VA Robotic Aid is a mobile manip-
ulation system that is being developed to assist severely disabled persons (quadriplegics) in performing

simple activities of everyday living in a homelike, unstructured environment. It consists of two major
\_components: a nine degree-of-freedom manipulator and a stationary control console @

i

In clinical applications, the Robotic Aid has been used as a voice-controlled telemanipulato;go. perform

a task, a user gives a serics of discrete, explicit motion commands, each corresponding to a degree of

freedom of the robot, such as: “Forward!”, “Left!”, “North!”, “Down!”. The direction commands have

to be qualified: the utterance “Left!”, for example, can refer to a rotation or a translation of the arm

or of the mobile base, in any one of several coordinate systems. Furthermore, the command can be
i interpreted as an incremental motion or as a continuous velocity. A variety of qualifier commands are
;E available to define the context of the specified directions. Experienced users of the Robotic Aid have
f achieved a considerable degree of skill: preparing and serving food, operating appliances, and performing
‘g various personal hygiene tasks. To an extent, however, users of the device have experienced frustration
{ and dissatisfaction due to : 1) the low dexterity and lack of sensory control of the gripper, 2) occasional
\\ errors of the speech recognition system, 3) the necessity of constantly monitoring the robot’s motion, 4)
1
i
i
!
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the unnatural character of the commands themselves. The first two factors are being addressed by several
members of the Robotic Aid team; the last two led the authors to hypothesize that the highly formalized
command structure should be replaced by simple colloquial English. This paper presents some of the
design constraints, and implementation decisions, that resulted from adding a natural-language interface
to the existing robot. Sections 2 and 3 describe the real-time software architecture required to produce

\ the correct robot motion in response to verbal commands. Sections 4 and 5 describe the interpretation
\
¥

\} of the commands.
\(2 'FUNCTIONAL DESIGN-— I —

”‘"/_..n——‘g‘ - . ) . - .
(‘ In the work-presented here, only the motions of the Robotic Aid’s omnidirectional motion base have been

considered, i.e., the six degrees of freedom of the arm and gripper have been ignored. The goal has been
¥ \\\ a few objects such as tables, chairs, and rugs. K},iven' these goals. and_testrictions, the.following are
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to develop some basic software tools for commanding the robot’s motions in an enclosed room containing ™
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intentions that an operator might wish to communicate to the robot through tl;g/!ﬁ;c of natural-language
commands: that the robot go to a given region of the room; that the robot moy€'in a given direction; that
the robot avoid a given region; that the robot stay within a given region;-that the robot follow a given
path; that the robot stop doing whatever it is doing at that time; that the robot perform any specific

_ motion at slower than (or faster than) normal speed; that the robot.speed up; that the robot slow down;
that the robot pursue two goals simultaneously (the goals are not necessarily achieved simultancously);
that the robot pursue one goal after another has been achieve‘,dffthat. the robot pursue a goal until a given
condition is met (the pursuit of the goal will be interrug,kéd); that the robot repeatedly pursue a goal
until a given condition is met; that the robot pursue a_goal if (or when or whenever) a certain condition
is met. The conditions the robot must detect are: @b‘ﬁ't a given distance has been traversed; that a given
time has elapsed; that the robot is beyond one region relative to another; that the robot's bumpers are
hit; and that the robot is in a certain region.” The robot's software architecture was designed to allow
commands expressing these intentions to Pe"‘interpreted.

As pointed out in a companion paper, the interpretation of even the simplest English commands to a
robot must take place in a contextual framework: one that specifies the perceptual, cognitive and motor
functions of the robot, as well as-an abstracted model of the external world (the robot’s operating envi-
ronment) which can be used to resolve references to such entities as objects, trajectories, and directions.

et .

In the present work, the environmental model takes the form of a two-dimesional map with objects
represcnted by polygons. Admittedly, such a highly simplified scheme bears little resemblance to the
elaborate cognitive models of reality that are used in normal human discourse. In particular, the polygonal
model is given a priori and does not contain any perceptual elements: there is no “polygon sensor” on
board the mobile robot. The adopted model should be viewed as a temporary device that establishes
a context for the mors significant developments in system design, language processing, and real-time
control. e -
Language processing provides an interface between the user and the robot. The robot is characterized
by four kinds of behavigr: 1) it can move about the room in a variety of generic ways; 2) it can mouitor
its internal state and its'state with respect to the environment; 3) it can resolve certain references to its
surroundings; 4) it can exéqute motion sequences within certain temporal and logical constraints. Specif-
ically, these behavior modey are implemented in the following building blocks of the robot’s software

architecture: MOTION ROUTINES, TEST ROUTINES, REGION ROUTINES and CON-
TROL STRUCTURES.

MOTION ROUTINES are simple goal-oriented algorithms that can generate or change motion. Seven
of these are currently supported: Stop, Pause, Resume, Piloting (moving in a specified direction),
RegionSeeking (translating towardy, or away from, known objects or regions of space), Orienting
(rotating with respect to objects or regions) and Repelling (moving around obstacles).

TEST ROUTINES (or simply TES'KS) are also simple run-time routines. They do not aflect the
motion directly, but return a boolean resajt. Six TESTS are currently implemented: RobotInRegion?
(is the robot in a specified region of space?)\Facing? (is the robot pointing at, or away from, a specified
region?), TimeElapsed?, DistanceCovered? AngleCovered? (has a specified time, translation, or ro-
tation increment elapsed?) and BumpersHit? (Nas the robot's segmented bumper system hit anything?).
Any TEST, along with its arguments, can be in¥Qked in one of two modes: IF and WHEN. In IF mode,
the computation is performed only once and the ragult (TRUE or FALSE) is returned immediately. In
IWWHEN mode, the calculation associated with the TEST is repecated until TRUE 1s obtained. Some of
the MOTION ROUTINES have implicit terminattyp TESTS, inveked automatically whenever the
MOTION ROUTINE is activated. '

REGION ROUTINES operate on the robot's two-dimesional world model. Real-life objects are mod-
eled as polygons (“regions”). In addition to named objects (\s\indow, for instanc~, names the window,
AN
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chair, the chair, etc.), regions are also used to represent areas defined with respect to objects, as de-
manded by natural-language expressions such as within siz feel of the stairs, at least two feet to the

_right of the table, and this side of the chair. These regions can be computed relative to any one of four
coordinate systems: the fixed room system; one centered on the robot; one centered on the speaker; and
one embedded in an object, such as a chair, that has an intrinsic orientation. REGION ROUTINES
are invoked by calls to procedure DetermineRegion with five arguments: the first names the object; the
second specifies a distance (with ¢ representing a small default distance); the third specifies a direction
(any of North, South, East, West, This, Other, Around, Left, Right, Forward, Back), the fourth specifies
the type of region computed (< for instance indicates that the region is within the limit specified by the
distance argument); and the fifth specifies the coordinate system (when none is given, the room: system
is chosen by default). :

CONTROL STRUCTURES embody the logical and temporal constraints imposed by the command.
There are seven basic forms which may be combined recursively to describe complex behavior sequences.

DO( B [until z]) This form results in the execution of MOTION ROUTINE B, to be terminated
as soon as TEST z returns the value TRUE. Because some MOTION ROUTINES have implicit
termination TESTS, the until clause is optional.

SEQ( Sy...Sn ) This form results in the sequential execution of daughter STRUCTURESV Si...Sn,
each of the which may be of type DO, SEQ, PAR, IF, WHEN, WHENEVER or REPEAT. As shown in
Section 4, language processing often produces the form SEQ(S), which simply denotes the execution of

S.
PAR( S;...Sn ) This form denotes simultaneous exccution of §;...5,.

IF( z then Sy {else S2]) This formn denotes the execution of Sy if the TEST = returns TRUE immediately,
i.e. at the time that the IF STRUCTURE is first encountered by the robot's scheduling algorithm,
Optionally, if x rcturns FALSE, S; is executed.

WIHEN( £ S) This form is similar to (IF z S) except that TEST =z need not be satisfied immediately:
S's execution will await r being TRUE. : :

WIHENEVER( £ S) This form results in the repetition of S each time r is true, with the provision that
S must terminate before z is tested again. Because this form has no explicit termination condition, it is

often combined with the DO form: DO( WHENEVER( z S) until y).

REPEAT( S until z) This form results in the repetition of S until the condition z is TRUE. Each instance
of § must terminate before another one can begin. The TEST z is evaluated whenever S terminates.

3 MOTION and TEST ROUTINES

A selection of the seven MOTION ROUTINES and six TEST ROUTINES currently supported are
used in the examples of Section 4. Their operation is described here.

Piloting

This proccdure takes three arguments: the first specifies whether the movement is linear or rotational;
the second specifies the direction of movement (North, for instance); and the third specifies whether the
default speed of the mobile base is to be increased, decreased, or not changed at all. Thus Piloting(Shift,
Left, +), will spawn a computation that shifts the robot to the left at a speed one unit greater than the
default -speed. Calls to Piloting are usually embedded in a DO STRUCTURE, and the robot will
stop moving only when the condition specified in the DO becomes true. First argument values: Shilt,
Rotate. Second argument values: North, South, East, West, Forward, Backward, Left, Right, Clockwise,
Counterclockwise. Third argument values: + ( increase speed), — (decrease speed).
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RegionSeeking . -

Activation of this procedure causes the robot to trarslate towards the nearest point on the boundary of a
region. The location of the nearest point (which is not necessarily one of the vertices of the polygon that
describes the region) is continually recomputed. The procedure takes three arguments: the first specifies
the region (as returned by the procedure DetermineRegion); the second argument indicates whether
that movement is towards or away; and the third argument specifies speed. First argument values: a sct
of vertices determined at run time. Second argument values: + (towards), ~ (away). Third argument
values: + ( increase speed), — (decrease speed). RagionSeeking has an implicit termination TEST:

RobotInRegion?
Orienting

A procedure of three arguments: the first specifies a region that the robot turns towards or away from;
the second and third arguments are as for RegionSeeking above. The implicit termination TEST is

Facing?
Repelling

A procedure of one argument: a region (as a set of vertices) which the robot is not allowed to enter.
When the robot is very close to the region, the only motion allowed is along or away from the boundary

of the region.

RobotInRegion?

This procedure takes one argument, a region. It returns TRUE if the center of the robot is in the region;
FALSE otherwise.

sacing?

This procedure returns TRUE if the robot is pointing at (or away from) a region. The region is the first
argument and the direction (+ or —) is the second. The requirement for TRUE is that there be at least
one region vertex on both sides of the robot’s forward (or backwards) direction axis.
DistanceCovered?

This procedure takes two arguments. The first gives a distance in inches; the second gives the direction
(Forward, North, etc.), along which distance is measured (the value Trajectory specifies straight line
distance between the starting point and present point). The routine returns TRUE if the distance covered
since the routine was activated is greater than or equal to the distance specified; FALSE otherwise.

4 COMMAND INTERPRETATION

The Language Processor accepts a user command in the form of a colloquial English sentence entered at
the terminal. It produces an Interpreted Command which contains the following information:
e which of the generic robot MOTION ROUTINES are to be invoked.

e the temporal order of execution and the logical conditions under which the MOTION ROU-

TINES are activated and terminated, as expressed by TESTS and CONTROL STRUC-
TURES.

e the parameters of any polygonal regions that were referred to in the command, and are to be
computed by the REGION ROUTINE.

In the following examples of Interpreted Commands, references to regions are left unresolved and implicit
termination TESTS are not shown:

Go to the desk.
SEQ(RegionSeeking(<the region around the desk>,+))

"Then go on over to the lelephone when the bumpers are hit.
WHEN(BumpersHit?, SEQ(RegionSeeking(<the region around the telephone>,+)))
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Slowly move backwards to within one inch of the stairs.
SEQ(DO(PAR( Piloting(Shift,Backward,-),
RegionSeeking(<the region one inch around the stairs>,+,—)),
RobotInRegion?(<the region one inch around the stairs>)))

Go north west for three feet then face the chair.
SEQ(SEQ(DO(PAR(Piloting(Shift,North),Piloting(Shil't,Wcst)),
DistanceCovered?(36,Trajectory))),

SEQ(Orienting(<the region around the chair>,+)))

An Interpreted Command is built up as follows. Individual words denote calls to robot ROUTINES and
CONTROL STRUCTURES. These calls may be partially or fully specified. A call is fully specified
when a ROUTINE (motion, test, or region) is named or a STRUCTURE is named and values are given
to all its arguments. A partially specified call leaves undefined either the ROUTINE or STRUCTURE
or an argument value. The process governing the synthesis of lexical calls (full or partial) to form an
Iuterpreted Command, one that specifies robot action, is the semantic tree [7] [8]. This tree is generated
fromn rules of semantic composition (called semantic functions) that are attached to the phrase-structure
rules of the grammar. A simple example illustrates the main ideas. While the example uses a context-free
grammar, semantic trees require no particular grammar or parsing method. The concept of a semantic tree
does fit very well, however, with the recent developments in augmented phrase-structure grammars that
Lave led to the theory of lexical-functional grammars and to the unification-based grammar formalisms
such as D-PATR {4] [5]. The grammar presently in use for the Robotic Aid was developed using the
D-PATR system available on the XEROX 1108 Workstations. A COMMON LISP version of the parser,
known as CPATR, is in use in the robot system.

A bricf overview of context-free grammars follows for those unfamiliar with language theory. A context-
free grammar consists of a finite set of terminal symbols, Wr, a finite set of non-terminal symbols, Wy, a
designated start symbol from Wy, and a finite set of production rules of the form x —y, where x € Wy
and y is a non-empty string in W*° where W = WrU Wy and W* is the sct consisting of concatenations
of any finite number of members of W. The elements of W, the terminal symbols, are the English words
used to instruct the robot. Each word belongs to a syntactic category which is designated by one of the
symbols from Wy. The word aveid, for instance, is a verb and belongs to the category V. The word chair
is a noun and belongs to the category N. A sentence that conforms to the rules of the grammar is said
to be parsed by that grammar and the structure of that parse is shcwn in a parse tree. An augmented
phrase-structure grammar also contains constraint equations which are attached to the symbols on the
righthand side of the production rules. These equations must be satisfied for all rules appearing in the
parse tree. Several examples of the use of constraint equations are to be found in Section 5.

Consider the parse tree for the imperative Avoid the chair. The non-tciminal labels shown are | (for

imperative), VPReg (for verb ph ~.e of region), NPReg (for noun phrase of region), V (for verb), N (for
noun) and DA (for definite article).

VPReg
-
/-—'/ -
v NPReg
n‘;ol 1d DA/ 7 N
I |

the chalr
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This parse is produced by a context-free grammar which is extended by assigning at moet one semantic
function to each production rule of the grammar. The semantic functions show how the denotation
at a node of the tree is derived from the denotations of its daughter nodes. In the grammar, square
braces show denotations. For instance, [NPReg] stands for the denotation of NPReg, [cAeir] for the
“denotation of chair. In this example, the denotation of cAsir is the routine that computes the region
around the chair. The denotation of evoid is the MOTION ROUTINE Repelling. The semantic
function [V]([NPReg]) desigrates the operation by which (NPReg] is set as the argument value for the
[V] routine. Note that the SEQ STRUCTURE is introduced by the remantic function attached to the
imperative rule. The definite article has no denotation in this simplified example. (It is clear from work
on discourse understanding that cues given eatlier in the discourse help fix the reference of a noun phrase
such as fAe chair. Crangle and Suppes [3] describe the use of an appropriate discourse mechanism, but
in this paper the semantic role of the definite article is ignored.)

Production Rule Semantic Function

[--> VPReg (1] = SEQ(|VPReg))
VPReg --> V + NPReg [VPReg| = [V]([NPIeg])
NPReg --> DA + N (NPReg) = [N]

Ve~ aroid [V] = [avoid] == Repelling

N == > chair [N] = [chair] == DetermineRegion(Chair Epsilon,Around, <)

Some semantic functions, such as the operation described above for specifying argument values, are
implemented in a straightforward manner in the D-PATR system using the operation of unification
and representing calls as feature-value pairs in the D-PATR notation. Other semantic functions are
accommodated in an extension made to D-PATR and CPATR. This extension also allows the execution
of LISP functions that, in interaction with the user, help determine the appropriate interpretation of
commands that are semantically ambiguous or semantically incomplete. One such example is discussed
in the next section along with several production rules and semantic functions fromn the robot’s grammar.
Full details of the implemented grammar are in a longer technical report now in preparation.

The extended grammar yields the following semantic tree for Avoid the chair. To the left of the colon at
each node is the terminal or non-terminal label. To the right of the colon is the denotation of that label.

At the top of the tree, the Interpreted Command specifies robot action for the English command Awvoid
the chair.

[.SFQ(Repelling(DetermineRegion(Chair Epsilon,Around,<)))
VPILeg:Repelling(Det,erminenegton(Chair,[-‘.psilon,Around,<))
V:Repelling NPReg: Det,ermineRoglon(Ch:ii r,Epsilon,Around,<)
avoid:Repelling DA N:DetermineRegion(Chatir,psilon,Around, <)

the chair:DetermincRegion(Chair, Epsilon, Around,<)
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When the rules of semantic composition are attached to the production rules of the grammar, the approach
is often called “syntax-driven translation.” This label is somewhat inappropriate for this work, however,
since the production rules are strongly constrained by the demands of the semantics, suggesting rather
the label “semantic grammars.” In such grammars, the categories are not those of grammars that concern
themselves mainly with syntactic phenomenon. For instance, the grammar for the mobile base of the
Robotic Aid does not simply have vetb phrases, but verb phrases of direction, of compound direction,
and of ragion. One result of this subcategcrization is that there are many more production rules. At
the same time, other conventional syntactic categories such as prepositional phrases are often missing,
with the result that relatively flat parse trees are produced for many sentences. An argument for such
grammars, and a discussion of their computational consequences, may be found in [6).

5 RULES AND CONSTRAINTS

Production Rule  Semantic Function » Constraint Equations

(1) VPDir --> VDir + AdvPhDir

 [VPDir] = SEQ({VDir)(|AdvPhDir],) VPDir SATISFIED = NO
(2) VP -> VPDir
[VP] = [VPDir] VP SATISFIED = VPDir SATISFIED
(3) 1-> VP |
[I] = SEQ({VP)) | SATISFIED = VP SATISFIED

(4) T->1+ UntilConj + D
(1] = DO({i] , b} I(rhs) SATISFILD = NO
I(Ihs) SATISFIED = YES

(5) VPDir --> VDir + AdvPhDist + AdvPhbDir
[VPDir] = DO(|VDir]({AdvPhDir},) , [AdvPhbist]([AdvPhDir},)
VPDir SATISFILD = YIS

(6) VPDir --» VDir + AdvPhbir
[VPDir] == DO([VDir[{[AdvPDirl,) DistanceCovered?(A<kllowlar, [AdvI’hDir}))
VPDir SATISFIED = YES

(7) VPDirC --> VDir + DAdv + DAdv + AdvPhDist
(VPDirC| = DO(PAR({VI)ir}([DA(IV]Q),[VDir]([Dx\dv]ﬂ)) , [Advl’hDist}(z\rchlxgl«h_l))

(3}  AdvPhDist --> ForP + AdvDist
' [AdvPhDist| = DistanceCovered?({AdvDist|,)

(9) VPReg > VRegS + AdvDir + ToP + NPReg

[VPReg] = DO(PAR(Piloting(Shift, [AdvDir|,),[VRegS|([NPReg] [ ToP],)).
2obotInRegion?([NPReg}))
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Several examples are now discussed using the nine rules above which are taken from the semantic grammar
for the Robotic Aid. The production rules of this grammar, in the spirit of lexical-functional grammars,
are augmented by equations that constrain the values that features can take. In the rules above, for
instance, the feature SATISFIED is constrained to take either the value YES or the value NO. (A note
on notation used in the semantic functions: When only some argument values are set, subscripts are used
to indicate argument positions. For instance, Routine-X(value-az,value-bs) indicates that the second and
third arguments of Routine-X are set to value-a and value-b respectively with other argument values left
unaltered. When all argument values are set, no subscripting is used.)

The first five rules illustrate the role played by the constraint equations. Rule (1) parses a verb phrase
such as Move forward which on its own is considered to be semantically incomplete in that it specifies
neither how far to move nor for how long. The verb phrase of direction (VPDir) is therefore marked with
the SATISFIED feature set to NO. Move forward may be embedded within a command such as Move
forward until you are at the table which is semantically complete and is parsed by rules (1), (2), (3), and’

(4) without inconsistency in the assignment of values to the SATISFIED feature. ( You are at the table
is parsed as the declarative D.) :

The verb phrase Move three feet forward, parsed by rule (5), is also semantically complete and so the
SATISFIED feature is set to YES in rule (5). The command Move three feel forward until you ave at
the table, on the other hand, cannot be parsed by rules (2), (3), (4), and (5) because SATISFIED is set
to YES by rule (5) and maintained with that value by rules (2) and (3), whereas by rule (4) the I (for
imperative) constituent appearing in the righthand side of the equation must have SATISFIED set to
NO. What the user might have intended by that command is more accurately expressed by the command

Repeatedly move three feet forward until you are at the table or Conlinue moving Jorward three feet al
time until you are at the table.

T

TsatisFieD = no UntilConj D
SATISFIED = YES

VPSATISFID = YES
VPDAr e, r1srieD = YES

VDir AdvPhDist  AdvPhDir

move three feet {forward until you are at the table

The sixth rule illustrates our handling of a command such as Move forward when it is not used in a context
that completes it semantically. The rule contains a call to the LISP routine AskHowFar which asks the
user to specify a distance to be used in the TEST DistanceCovered?. (This routine is executed only
if rule (6) appears in the final parse tree; it is not executed during the parsing process itself when rules
are successively tried and discarded.) As discussed extensively in the companion paper in this volume,
interaction between the robot and the user (and between the robot and its perceptual environment) is
essential to the interpretation of natural-language commands. This example illustrates just one of the

many occasions that call for interaction. Other obvious examples are the use of words such as left in Go
left which can be interpreted relative to the robot or the speaker.

The seventh, eighth, and ninth rules, shown here without their constraint equations, illustrate something
of the “fit” thai %as to be found between the surface structure of English commands and the robot rou-
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tines. Rule (7) parses a verb phrase such as Move north west for three feet. (It is convenient semantically
to treat northwest as two separate words.) The robot’s Piloting routine knows only about the four
compaas directiors sf-north, south, east, and west given by the room coordinate system. The only way
to accornplish movement in the northwest direction in response to this command is to simultaneously
execute a Piloting(North) and a Piloting(West). This parallel STRUCTURE is then embedded
in a DO STRUCTURE with the adverbial phrase of distance (AdvPhDist) contributing the TEST
DistanceCovered? with its first argument value set in rule (8). Notice that in rule (7), the second
argument value of DistanceCovered? is set to the value Trajectory.

Rule (9) parses verb phrases such as Go left towards the table, invoking the simultaneous execution of
a Piloting(Left) routine and a RegionSesking(<the region around the table>) routine embedded in
a DO STRUCTURE with a RobotInRegion? TEST to determine when the robot is at the table.
Note that a simple PAR STRUCTURE of Piloting and RegionSeeking is not sufficient: in that case,
RegionSeeking would end when the robot reached the table, but Piloting would not, and the robot

" would continue moving left. It makes sense to issue this command only if in moving leftwards the robot
would indeed reach the table.

6 IMPLEMENTATION AND COMMAND EXECUTION

The mobile robot consists of a six degree-of-freedom Unimation PUMA 260 robotic arm, equipped with
a simple gripper and mounted on a unique three-wheeled motion base. The 12-inch diameter wheels of
the base are located at the vertices of an equilateral triangle with 17.3-inch sides. The circumference of
each wheel consists of 20 free-wheeling rollers which allow the wheel to move in a direction parallel to
its axis of rotation. An onboard processor generates position coramands to the wheel controllers at a
rate of 15 Hz. By choosing a set of three rotational wheel velocities, any combination of translations and
rotations can be achieved. The robot possesses complete freedom of motion in the plane, unlike other
vehicles whose wheels have to be re-oriented before the direction of motion can change.

The onboard computer is a Digital Equipment Corporation LS111 /73. The motion computation routines
were written in MicroPower PASCAL, a dialect of PASCAL that explicitly supports a high level of multi-
process concurrence on a single CPU. This is achieved through a system of dynamic priority assignments
and inter-process synchronization and communication functions such as semaphores and mailboxes. In
addition, multiple invocations of a given re-entrant process can run concurrently, each in its own priority
and memory-mapping context. Typically, at any given time, a dozen processes are competing for access
to the CPU, the exact number of processes depending on the specific command being executed. A
MicroPower PASCAL kernel assigns access based on priority. Although this system has the desired
flexibility, it requires that the individual routines be as simple as possible to reduce the overall CPU load.
The kernel contributes an approximate CPU overhead of 20%, with additional processing time needed for
boilerplate functions such as kinematic computations and communication with the Language Processor.

0 Language Processor\ interpreted Command
@ Parser + Grammar +

Semantic Functions +
Region Routines
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When an Interpreted Command is produced by the Language Processor, it is acquired by a program
called the Scheduler which is in charge of activating TESTS and MOTION ROUTINES based on
the content of the Interpreted Command. Typically, inspection of the Interpreted Command will result
in invoking one or more TESTS and/or MOTION ROUTINES. This is done by sending a coded
command (containing the identifier of the desired routine(s) and its arguments) to the robot. A utility
routine on the robot maintains a variety of tables and other data structures that keep track of the state of
the system which, at any instant, is defined by the currently executing set of MOTION ROUTINES
and TESTS. The instantaneous state of the robot persists until one of the TESTS returns a value.
Then, and only then, is the Scheduler reactivated. It examines the Interpreted Command to determine

the appropriate response — usually the invocation or termination of other MOTION ROUTIN ES
and/or TESTS.

The Language Processor and the Scheduler were implemented in COMMON LISP on a stationary Mi-
crovax II computer. The MOTION ROUTINES and TESTS (implemented as PASCAL procedures)
run on the mobile robot’s LSI111/73. To guarantee smooth motion of the robot, these procedures are
executed at a fixed rate of 15 Hz. Whenever the Scheduler activates or terminates a MOTION ROU-
TINE or TEST, a command packet is sent to the robot via the radio link, specifying the name of the
routine and its arguments. The robot responds whenver a TEST returns TRUE (if it was invoked in
WHEN mode) or TRUE/FALSE (if JF mode was selected).

During most instances of command execution, a number of MOTION ROUTINES execute con-
currently. For example, in the case of the command Move lo the front of the desk while facing the
window and avoiding the rug and the lamp, four MOTION ROUTINES are active simultaneously:
RegionSeeking(<the region in front of the desk>), Orienting(<the region around the window>), and
two instances of Repelling: one with argument (< the region around the rug>), the other with argument
<the region around the lamp>). Each MOTION ROUTINE contributes to the overall motion of the
robot in the form of a three-dimensional (two translations and one rotation) velocity vector in one of
two coordinate systems: the fixed room system (directions: north, south, east, west, turn clockwise, turn
counterclockwise), and the moving base system (directions: forward, backward, left, right, turn left, turn
right). As noted earlier, all process computations are iterated at 15 laz.
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